

Practical Geopressure Detection and Prediction

A practical Course designed for the well drilling planning and construction team

Objectives

- 1. Develop a comprehensive understanding of geopressure generation, occurrence, and detection in real time
- 2. Focused practices on real time detection of pore pressure relative to mud pressure
- 3. Understand the practical methodologies for estimating pore pressure in shale, sandstones, and in carbonate with the necessary caveats for each lithology

Who should attend?

Anyone who is connected with well construction from the planning phase to post mortem including drillers, toolpushers, drilling engineers, geologists, crew members, and service personnel.

Course Materials

The course will be delivered using a mixture of power point presentation, a course manual, and some use of software tools.

Instructor:

Robert Dwiggins II- Vita Attached

Course Content:

Day	Topics	
1		Fundamentals of Geopressure Occurrence
	•	The well planning process
	•	The role of pore pressure prediction on well planning
	•	Deep water wells
	•	Geopressure Concepts and Basic Definitions
	•	Hydrostatic Pressure vs Water Salinity
	•	Normal Pressure, Subnormal Pressure, Abnormal Pressure
	•	Overburden Pressure
	•	Abnormal Pressure Causes (Undercompaction, Aquathermal Expansion,

Contact us: info@drill-sense.com (713) 609-9865 (USA) drill-sense.com

Instructor: Robert Dwiggins II DSI Associate

	Clay Digenesis, Tectonics, others)
	Faults and Fractures
	Topography
2	Pore Pressure Detection While Drilling
	Abnormal Pressure Indicators While Drilling
	 Gas (trip, background, connection, extra)
	ROP (d-exponent)
	Cuttings and Cavings
	 Temperature (surface temperature in land and deepwater wells)
	Mud Chlorides
	 Abnormal Pressure Indicators (Logging and Seismic)
	Case studies
3	Basic Pore Pressure Principles and Calculations
	Effective Stress (Terzaghi's Equation)
	Bulk Density from Porosity
	Effective Stress versus depth for different Water Depths
	Overburden Gradient Calculation
	 Gardner Transforms (Velocity / Density, Sonic / Density)
	Calculating near-mudline RHOB's
	Calculating RHOB's without any data
	Recommendations for Calculating OBG
	Pore Pressure Models
	General Velocity / Effective Stress Relationship
	Vertical and Horizontal Effective Stress Methods
	Sonic Normal Trends
	Bowers velocity / effective stress
	Virgin Pressure Case
	Secondary Pressuring (Unloading)
	 Bowers velocity / effective stress (unloaded case)

Contact us: info@drill-sense.com (713) 609-9865 (USA) drill-sense.com

	Virgin pressure case
	Unloaded case
	Variances in pressure predictions according to model
4	Pore Pressure Interpretation Pitfalls
	Pressure regressions
	Pressure Compartments
	Lithology changes and Normal Trends
	Shale hydration / mud invasion
	Structural Uplift (Centroids)
	Temperature
	Secondary Pressuring (Unloading)
	Anisotropy
	Uncertainty analysis
5	Fracture Gradient
	Fracture Gradients Models and Assumptions
	 Horizontal to Vertical Stress Ratios ("Poissons" or K0)
	Calculating matrix stress coefficients
	Non Conventional Fracture Gradient Estimation
	Measurements of In Situ stress
	Computation of In situ Minimum Stress from Losses Events
	Class Projects
	Pore pressure prediction from seismic data alone
	Pore pressure prediction in real time
	Post mortem pore pressure analysis

Contact us: info@drill-sense.com (713) 609-9865 (USA) drill-sense.com

The Instructor: Robert Dwiggins II

Over 28 years experience in wellsite operations, surface and down hole data processing and interpretation. Geopressure and wellbore stability analysis using Drillworks software suite. Drilling rig supervision, drilling engineering, technical training, and consulting in geopressure detection, prediction, and analysis including offshore and international drilling operations. Bob specializes in pre-drill and post-well analysis using client-supplied data to develop geopressure profiles including wellbore stability studies, uncertainty and seal compartment integrity analysis. As one of our most experienced analysts, Bob advises customers and peers on optimal techniques for using Drillworks software to analyze geopressure and sub-surface hazards. He has conducted custom customer training at both domestic and international locations and performed field geopressure analysis using Drillworks software in the Gulf of Mexico, Australia and Trinidad. He contributes to help system enhancements for Drillworks solutions software and features.

Contact us: info@drill-sense.com (713) 609-9865 (USA) drill-sense.com

